

ION Novel Solvent System for CO₂ Capture

2012 NETL CO₂ Capture Technology Meeting July 10, 2012 Pittsburgh, PA

Partners, Funding & Cost Share

Partners & Contractors

- University of Alabama
- WorleyParsons
- EERC
- EPRI
- Xcel Energy
- Evonik
- Eltron R&D

Funding Sources

• DOE/NETL: \$4,836,424

ION & Partners: \$1,618,335

Total \$6,454,759

Project Start: 10/01/2010

Project End: 04/30/2013

Solvent Development & Testing at ION Engineering

Bench Scale Solvent Property Measurement and Screening

ASPEN+ Process and Economic Modeling of ION Solvents

Lab Pilot Unit Steady State
Evaluation of Solvents

Overall Project Goals

Novel Solvent System for Post-Combustion CO₂ Capture

- Evaluate ION's non-aqueous organic solvents (NAOS) for post combustion CO₂ capture using simulated and real flue gas
- Advance ION's solvent and process technology to TRL 5 – real flue gas testing and ready for slipstream testing

Major Project Objectives

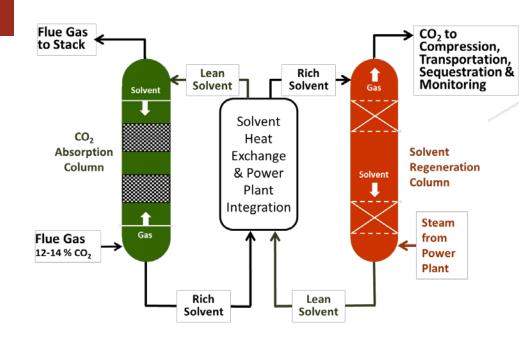
Phase 1

- Solvent development
- Lab pilot construction
- Simulation for NAOS

Phase 2a

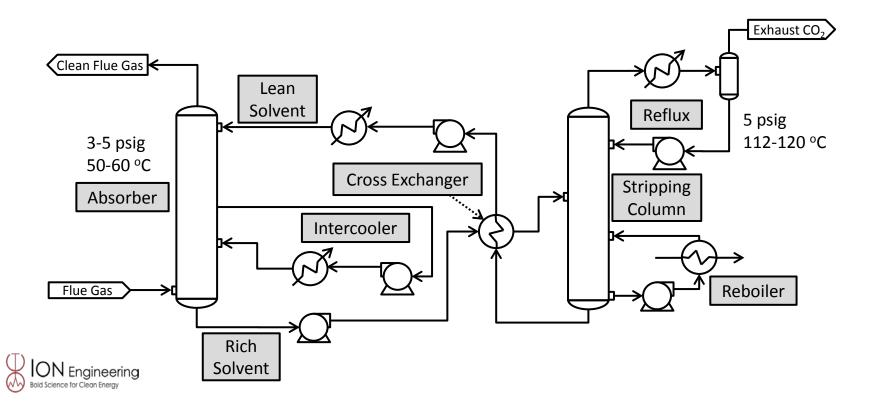
- Improved solvent development
- Expand operating conditions in lab pilot
- Validated NAOS simulations
- Establish solvent performance potential
- Preliminary economic analysis at scale

Phase 2b


- Advanced solvent development
- Testing with real flue gas at EERC
- Benchmark to aqueous –
 MEA and others
- Complete technology evaluation and economic analyses at scale

ION Solvent Technology

2nd Gen CCS Solvents


- Replace H₂O with tailored, organic solvents
 - Low volatility
 - > Improved CO₂ solubility
 - > Improved regeneration energy
- Replacement for 1st generation aqueous amine solvent systems

ION's NAOS Used in Conventional CO₂ Capture Processes

- ION solvent will be used in conventional aqueous amine processes
 - > Stripping column solvent regeneration

ION's NAOS Used in Conventional CO₂ Capture Processes

- ION solvent will be used in conventional aqueous amine processes
 - > Stripping column solvent regeneration

Implementing ION's Solvent Technology

Advantages of ION Solvent

- Improved separation performance
- Lower regeneration energy
- Minimal water use
- Solvent properties readily tailored
- Solvent can be refilled/retrofitted into existing CC units
- Solvent can be used with nonconventional separation technologies

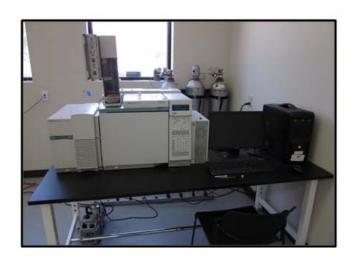
Key Challenges Moving Forward

- Validate heat duty with real flue gas
- Validate solvent lifetime with real flue gas
- Reduce regeneration energy/optimize solvent capture performance
- Mitigate project risk through slipstream testing
- Improve solvent performance & drive down COE

ION R&D Approach and Capabilities

- Vapor-liquid equilibrium
 - > Vapor pressure data
 - ➤ CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents

- Vapor-liquid equilibrium
 - > Vapor pressure data
 - > CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents



- Vapor-liquid equilibrium
 - > Vapor pressure data
 - > CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents

- Vapor-liquid equilibrium
 - > Vapor pressure data
 - > CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents

- Vapor-liquid equilibrium
 - > Vapor pressure data
 - > CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents

Used to develop ASPEN+ process simulation

- > Model a wide range of operating conds.
- Predict heat duties
- Investigate process performance of new solvents – amine mixtures

- Vapor-liquid equilibrium
 - > Vapor pressure data
 - > CO₂ loading data
- Calorimeter
 - > Heat of reaction measurement
- GC/MS
 - > Solvent degradation analysis
- Fully equipped synthesis hood
 - Development of functional amines and physical solvents

Used to develop ASPEN+ process simulation

- > Model a wide range of operating conds.
- Predict heat duties
- Investigate process performance of new solvents –amine mixtures

Next gen solvent development

- > Keeps ION technology competitive
- Driving toward improved performance

- ION's Pilot Unit
 - > 22' x 3" Absorber column
 - > 10' Structured packing
 - > Dual flash regeneration
 - > Simulated flue Gas: CO₂/N₂/H₂O
 - > Up to 180 SLPM gas flow
 - > Up to 12 gph liquid flow

- ION's Pilot Unit
 - > 22' x 3" Absorber column
 - > 10' Structured packing
 - > Dual flash regeneration
 - > Simulated flue Gas: CO₂/N₂/H₂O
 - > Up to 180 SLPM gas flow
 - > Up to 12 gph liquid flow

Absorber Column

- ION's Pilot Unit
 - > 22' x 3" Absorber column
 - > 10' Structured packing
 - > Dual flash regeneration
 - ➤ Simulated flue Gas: CO₂/N₂/H₂O
 - > Up to 180 SLPM gas flow
 - > Up to 12 gph liquid flow

Dual Flash Regeneration

- ION's Pilot Unit
 - > 22' x 3" Absorber column
 - > 10' Structured packing
 - > Dual flash regeneration
 - > Simulated flue Gas: CO₂/N₂/H₂O
 - > Up to 180 SLPM gas flow
 - > Up to 12 gph liquid flow
- Mass Balance Analytics
 - > Total Inorganic Carbon (TIC)
 - > Karl Fischer titrator
 - > CO₂ Analyzer

- ION's Pilot Unit
 - > 22' x 3" Absorber column
 - > 10' Structured packing
 - > Dual flash regeneration
 - > Simulated flue Gas: CO₂/N₂/H₂O
 - > Up to 180 SLPM gas flow
 - > Up to 12 gph liquid flow
- Validation & improvement of Aspen+ model
 - > Scaled process simulations
 - Risk mitigation

- Pilot Unit Upgrades
 - > Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness

Improved Liquid Flow Metering

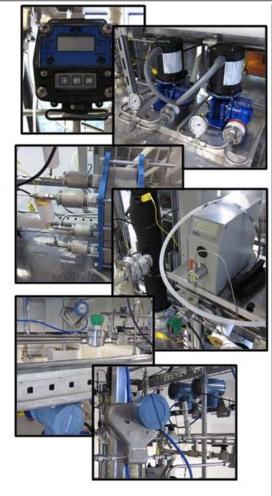
- Pilot Unit Upgrades
 - ➤ Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness

Enhanced Liquid Flow Capacity

- Pilot Unit Upgrades
 - ➤ Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness

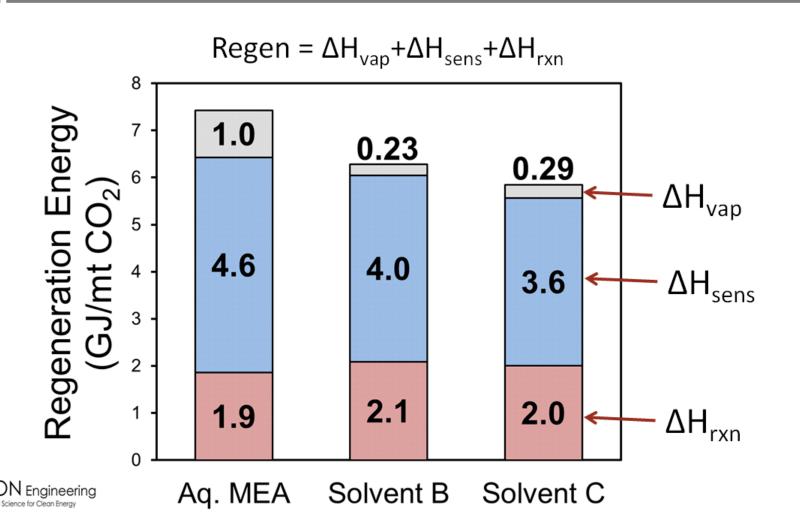
Increased Flash
Temperature Range

- Pilot Unit Upgrades
 - > Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness

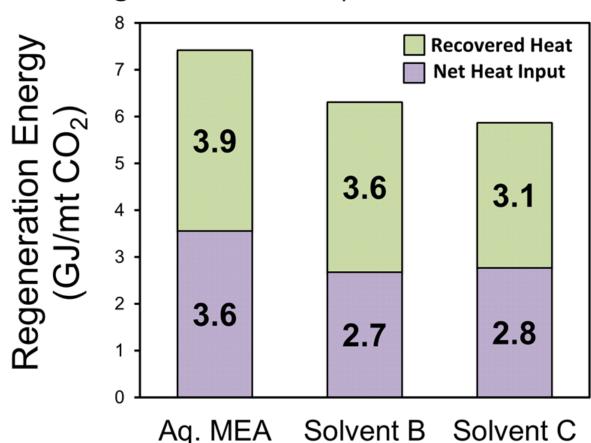


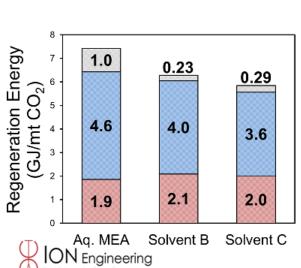
- Pilot Unit Upgrades
 - ➤ Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness

- Pilot Unit Upgrades
 - ➤ Improved mass balance closure (±2%)
 - > Wider operational range
 - > Increased process robustness
- Additional Upgrades:
 - Organic/light gas GC for improved gas phase analytics
 - > Stripping column for rigorous solvent evaluation

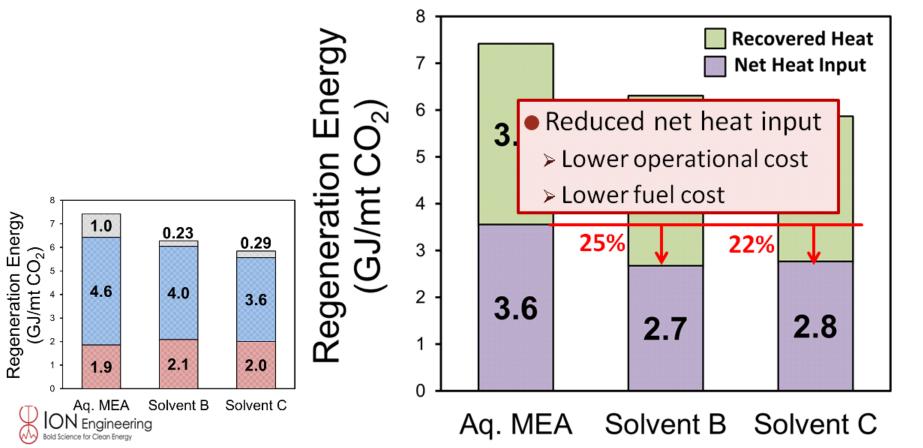


ION Solvent Performance and Benchmarking



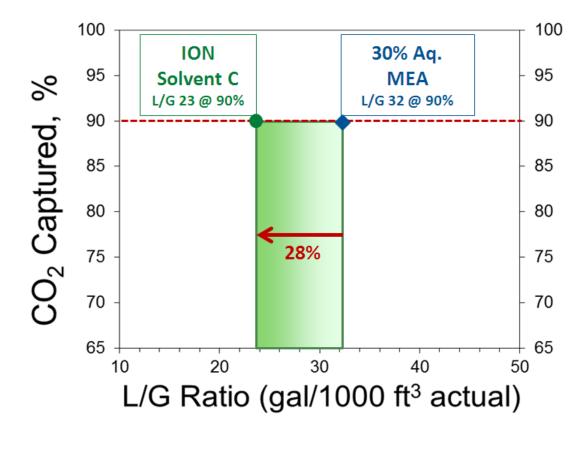

Regeneration Energy: ASPEN+ Predictions – Coal Conditions

Regeneration Energy: ASPEN+ Predictions – Coal Conditions


Regen = Net Heat Input + Recovered Heat

Regeneration Energy: ASPEN+ Predictions – Coal Conditions

Regen = Net Heat Input + Recovered Heat



CO₂ Capture Efficiency

Leveraging Combined Solvent Properties for Efficient CO₂ Capture

- L/G @ 90% CO₂ capture
 - > Solvent circulation rate
 - Capital costs
 - Operating Costs

Solvent	Carrying Capacity (mol CO ₂ /gal)
Aq. MEA	3.6
ION C	4.8

ION's Value Proposition

Demonstrated reduction of *Latent Heats* is possible with *Advanced Physical Solvents*

- Tailored physical and chemical solvent mixtures
 - > Lower regeneration energy < *Operating costs*
 - ➤ Higher CO₂ carrying capacity < Capital costs</p>
- 2nd generation CO₂ capture solvents that
 - > Retrofit existing plants and
 - > Refill 1st gen CCS facilities
- Economic removal of CO₂ from <u>coal</u> and <u>natural gas</u> fired flue gas

The next 12 months at ION

- Solvent development activities ongoing
- Process simulations & Lab pilot
 - > Validate predictive ability for scale-up
 - > Expand operating conditions, optimize process
- EERC solvent testing, performance validation & benchmarking
- Prepare to initiate Slipstream Project Q3/Q4 2013

EERC Test Campaigns Planned for 2012/2013

ION Testing Program at EERC

- Directly measure performance in coal and natural gas environments
- Solvent and process optimization in real flue gas environments

EERC CTF Facilities

- 550,000 Btu/hr (O.2 MW) multi-fuel capability
- Highly instrumented CO₂ capture facility, adjustable absorber & stripper columns, variable packing materials

ION's Technology Development Timeline

Initiate 1-5 MW Slipstream Project in Q3/Q4 2013

- Identify potential partners
 - Host site
 - Engineering & Construction

Partner commitments

Finalize partner& contractoragreements

Q3 2012

Q4 2012

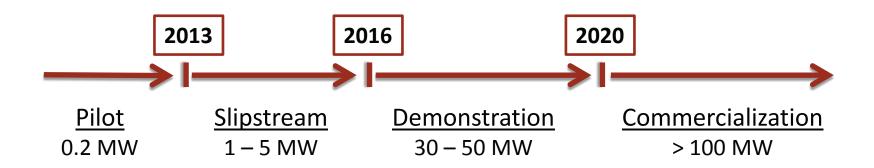
Q1 2013

Q2 2013

Q3 2013

EERC Testing

- 0.2 MW operating data for flue gas
- Continue solvent & process optimization
- Preliminary design & costing for slipstream project
- Secure project funding


Prepare for Slip Stream

Initiate slipstream project

ION's CO₂ Capture Commercialization Timeline

Scale up & Demonstration of ION Technology to drive Economic CO₂ Capture for Coal and Natural Gas Fired Power Generation

For more information:

Alfred (Buz) Brown, CEO brown@ion-engineering.com

Nate Brown, Director BD & Research Management nate@ion-engineering.com

Trevor Carlisle, Senior Research Engineer carlisle@ion-engineering.com

